
Arduino and model boats

by G6SWJ

Read more by scanning the QR code below

or by going to:

model-boats.com/77106

model-boats.com model-boats.com

Page 2

23rd Jul 2020
Arduino and model boats

PART ONE Hello – it’s great to see that there are a bunch of you interested in Arduino and model
boats I love playing with Arduino, I learn something new almost every day and find it mentally
stimulating and rewarding working through the “How can I do this” of an Arduino project. It’s a big
topic and comes with a set of it’s own jargon so it can be difficult to know where to start, how much is
it going to cost, where can I purchase the boards etc. etc. There are some fundamental building blocks
that you need in place to be able to start your Arduino journey and it can be all to easy to give up on
the subject when you hit a brick wall. My approach will be blended learning – there are some fabulous
free learning resources on the internet – these are top notch well thought out and well-presented short
videos. We all have different levels of understanding about Arduino – I will pitch the posts at those just
starting their adventure – read on past if this is not you and and you come across familiar territory and
maybe check back in when things get a bit more juicy. A taster for some of the projects to come A
bilge water alarm - https://www.youtube.com/watch?v=HcpV0flL-zA A Morse code/ Aldis flasher -
https://www.youtube.com/watch?v=8_SiZkciRsA No more waffle from me - lets scratch the surface of
2 of the building blocks – investing time watching these video a couple of times each will give you a
good grounding in the subject. Arduino Hardware overview and Arduino Integrated Development
Environment – the free text editor like software where you create a program (from this point onwards
referred to as the IDE) The four videos below have some overlap but they give a great introduction -
enjoy https://youtu.be/nL34zDTPkcs https://youtu.be/09zfRaLEasY
https://www.youtube.com/watch?v=fJWR7dBuc18 https://www.youtube.com/watch?v=CSx6k-zXlLE
This post is intended to set the scene and give you an overview of the subject Please do post any
questions / feedback PART TWO will cover: Writing your first program Regards Jonathan

Page 11model-boats.com model-boats.com

Page 3

24th Jul 2020
Arduino & Model Boats - Part 2

If you have watched the “setting the scene” videos from Part 1 you should now
be more familiar with some aspects of Arduino. I am going to suggest that you
don’t purchase any boards or accessories right now. Wait until we have covered
a bit more of the topic – you will be able to judge then whether this is for you or
not and therefore save wasting money. In Summary: > Arduino is open source
and anybody can manufacture the boards – if not made by Arduino(Italy) then
they should have a different name e.g. Seeeduino > The boards have inputs and
outputs (Analog 0-5v, Digital 0 or 5v) > It is necessary to select the com
(communication) "port" in the IDE that the Arduino board is connected to > It is
necessary to select which Arduino board type (Uno,Nano etc) you are using in the
IDE > Programs (also known as Sketches) are written in the free IDE computer
software > Programs are uploaded from the IDE to the Arduino board using a
USB cable The next video shows you how to write a very simple program to flash
an LED - the full program code can be seen in the attached image
https://www.youtube.com/watch?v=d8_xXNcGYgo Regards Jonathan

Page 10 model-boats.com model-boats.com

Page 4

24th Jul 2020
Arduino & Model Boats - Part 3

HINTS AND TIPS >>DOCUMENT your code as you go We can add comments to our program code to help us
understand what each line or section is doing. All text on the same line after a double forward slash is defined as a
comment e.g. // This is a comment This has no effect on the program code or memory use when uploaded to the
Arduino. In a simple program this may seem unnecessary – it is however a good habit to adopt. When you open a
program 6 months down the road you may find you look at the code you wrote and struggle to understand your long
forgotten logic – it can be very annoying when you can’t understand your own code! >>SAVE your program regularly
with a different name I use an approach where I give the program a name and suffix _xxx. xxx is simply an
incremental serial number “MyLedFlasher_001.ino”, “MyLedFlasher_002.ino” etc Often my enthusiasm overruns
and I change lots of lines of code all at the same time only to find the program does not do what I expected or results
in an error. If you have overwritten your previous working copy with the same file name you will feel your blood
pressure rising. When the going gets tough I rename after each and every change - trust me this approach pays
dividends... >>SYNTAX – what is it? Definition = “the structure of statements in a computer language” There are a
set of rules (syntax) you need to comply with in order for the IDE to accept your program code as valid. For example
one syntax rule is most lines of code require the “line terminator character” – a semi colon to be added to each line
of code to tell the IDE “end of line”. If you make Syntax errors then the code will not upload(compile) to the Arduino
board and you will be left with an orange error bar at the bottom of screen and some error text hinting at what might
be wrong with your code. Another example of a Syntax error is incorrect use of lower case or capital letters for
program commands. digitalWrite(LEDPin, HIGH); is valid syntax and works digitalwrite(LEDPin, HIGH); is invalid
syntax and does not work as the letter w is in lower case Brackets are always used in pairs - open and close () or {} -
it is easy when code gets more complex to omit a bracket Get used to the orange error bar and syntax errors they
happen all the time to all programmers – or at least it does for me. You will get familiar with solving the errors over
time – some can take a few minutes to work out what you have done wrong. In the worst case it can be best to take a
step backwards – open the previous saved working version, rename it so the working version is left untouched and
then start again with your changes. -x- So that was some
heavy stuff, on a lighter note looking forward to some of the upcoming projects I will touch on - very happy to add
requests to this list Bilge water alarm Temperature Alarm Dimming LED’s Morse code & Aldis lamp signalling your
own message Simulating rotating emergency light Moving a servo - this could be to let down a ramp or simulating
gun turret movement Slowing down servo movement Running a servo movement sequence Automatic ballast trim to
correct/rebalance vessel leaning to one side or other Active stabilisers Reading the receiver channels Engine sound
device Switching 16 circuits from just one transmitter stick Holding a compass heading Remember Rome was not
built in a day - Be patient with yourself and enjoy this fascinating topic Regards Jonathan

Page 9

11th Aug 2020
Arduino & Model Boats 8 - Bilge Water Alarm

Here is the full code for a Bilge Water Alarm. If you have followed this thread you should be able to follow what's
going on - the video is using the same code as posted below. Part of learning Arduino is uploading someone else's
working code that you may not understand to your own Arduino board and then changing values etc and seeing what
affect that has Regards Jonathan _._ + + + + + + + + + + + + + // Water Alarm 25/07/2020 // Use 2 wire probes
located in the area that may contain water, place them a few cm's apart // Connect one wire to a GND pin the other to
Analog pin A0 // To make the sound we connect a small piezoelectric sounder to pin 6 and GND int soundFreq =
700; // Sound frequency (in Hz) int soundStep = 50; // Sound frequency increment - to make the alarm sound vary in
pitch we will increment the tone frequency when it is triggered const int ledPin = 13 ; // LED pin const int soundPin =
6; // Ouput pin 6 connected to our piezoelectric sounder device const int sensorPin = A0; // Simple piece of wire
connected to pin A0 used as a probe located in area that may contain water uint16_t sensorValue = 0; // variable to
store the analog pin value when it is read using command analogRead(pin) - value will be in the range 0-1023 void
setup() // Setup code - this runs once and sets up outpin etc. { pinMode(ledPin, OUTPUT) ; // define our ledPin as
output pinMode(soundPin, OUTPUT); // define our soundPin as output pinMode(sensorPin, INPUT_PULLUP); //
define our analog sensor pin as input - we are using pin A0 //digitalWrite(A0, INPUT_PULLUP); // Set the default
state } void loop() { sensorValue = analogRead(sensorPin); // Read the analog value of A0 - will return a value
between 0 and 1023 if (sensorValue > 1000) // test the analog sensor value now stored in variable "sensorValue" - if
it's greater than 1000 then continue. If less than 1000 process the code defined by "else" { digitalWrite(ledPin, LOW);
noTone(soundPin); delay(50); } else // if the sensoValue is less than 1000 then process the code below {
digitalWrite(ledPin, HIGH); // Turn on the LED by setting the ledPin to High (5v) // The code chunk below is used to
make the frequency of the sound on the soundPin vary // By increasing frequency to a preset value and then
decreasing to a preset value - it then repeats each loop up & down in frequency to shape the alarm sound
tone(soundPin, soundFreq) ; // Set the soundPin to the value stored in soundFreq soundFreq = soundFreq +
soundStep; // increment the soundFreq by adding the value stored in the variable named soundStep - if soundStep =
50 the frequency will increase / if soundStep = - 50 the frequency will decrease if (soundFreq == 1200) // test the
soundFreq - if it's reached 1200 then { soundStep = -50; // change value of soundStep to - 50 } if (soundFreq == 700)
// test the soundFreq Value { soundStep = 50; // change value of soundStep to 50 } delay(25); // pause 25ms
digitalWrite(ledPin, LOW); // turn the led pin off (0v) by setting the value to LOW delay(25); pause 25ms } } Below is
the same code but without comments - might make easier reading as displayed on the forum. int soundFreq = 700;
int soundStep = 50; const int ledPin = 13 ; const int soundPin = 6; const int sensorPin = A0; uint16_t sensorValue =
0; void setup() { pinMode(ledPin, OUTPUT) ; pinMode(soundPin, OUTPUT); pinMode(sensorPin, INPUT_PULLUP);
//digitalWrite(A0, INPUT_PULLUP); } void loop() { sensorValue = analogRead(sensorPin); if (sensorValue > 1000) {
digitalWrite(ledPin, LOW); noTone(soundPin); delay(50); } else { digitalWrite(ledPin, HIGH); tone(soundPin,
soundFreq) ; soundFreq = soundFreq + soundStep; if (soundFreq == 1200) { soundStep = -50; } if (soundFreq ==
700) { soundStep = 50; } delay(25); digitalWrite(ledPin, LOW); delay(25); pause 25ms } }

model-boats.com model-boats.com

Page 5

25th Jul 2020
Arduino & Model Boats - Part 4

Summary of learning points so far: > Arduino is open source – anybody can make
the boards > Arduino boards have inputs and outputs - analog (0-5v) and digital 0
or 5v > We use the IDE to write our code and upload it via a USB cable to the
Arduino board > We need to tell the IDE which com “port” and type of Arduino
board we are using > Programs are also known as sketches > Programs have 2
parts – SETUP runs once as the program starts and LOOP that runs continually >
DOCUMENT code as you create it using // This is a comment > SAVE your code
regularly using a new name each time, the name hints at what the program does
– e.g. MyLedFlasher_001, MyLedFlasher_002, etc > Syntax – a set of language
rules you must comply with >> Terminate lines with ; >> Use upper and lower
case appropriately where needed >> Brackets always used in pairs – open and
close Future topics we will cover: + Data types + Compiling code + Debugging
code + Functions + Common programming structures/concepts e.g. "If this then
do that" + Command sheets + Addin libraries + Interrupts + Serial monitor +
Debouncing + i2c & SPI + PWM = pulse width modulation + Sensors + Arduino
performance + How to power the Arduino + Quick glimpse at ATtiny, Teensy and
esp32 And the command I hate the most “delay” - like driving a Ferrari with the
hand brake on... Regards Jonathan

Page 8

11th Aug 2020
Arduino & Model Boats 7

Apologies to those interested in this topic for the long gap between posts - life got in the way! Summary of learning
points so far: > Arduino is open source – anybody can make the boards > Arduino boards have inputs and outputs -
analog (0-5v) and digital 0 or 5v > We use the IDE to write our code and upload it via a USB cable to the Arduino
board > We need to tell the IDE which com “port” and type of Arduino board we are using > Programs are also
known as sketches > Programs have 2 parts – SETUP runs once as the program starts and LOOP that runs
continually > DOCUMENT code as you create it using // This is a comment > SAVE your code regularly using a new
name each time, the name hints at what the program does – e.g. MyLedFlasher_001, MyLedFlasher_002, etc >
Syntax – a set of language rules you must comply with >> Terminate lines with ; >> Use upper and lower case
appropriately where needed >> Brackets always used in pairs – open and close > We can send text from the Arduino
to the IDE Serial Monitor popup window by using the command Serial.print() Arduino has INPUTS and OUTPUTS In
this post we will use an input 'state' to send some text to the IDE Serial Monitor popup The code below monitors the
'state' of one input pin (pin8) and depending on the 'state' of pin8 (HIGH or LOW) sends some text to the IDE Serial
Monitor popup window. To make pin 8 HIGH I connect a jumper cable between the Ardunio 5v pin and pin 8 To make
pin 8 LOW I connect a jumper cable between the GND (ground or zero volt pin) and pin 8. When using Arduino you
will regularly come across the concept of pins (both INPUT and OUTPUT) being HIGH or LOW. HIGH simply means
that the pin is at 5 volts and LOW that the pin is at 0 volts (zero or GND (gound)) – NB Some Arduino’s are based
around 3.3v logic not 5volt – I’ll cover this later So: HIGH = 5volts or logic value 1 (one) and LOW = 0 volts or logic
value 0 (zero) The HIGH or LOW are often referred to as “logic states” To 'test' the logic state of the pin8 we will use
the command digitalRead(8) – this will return one of two values – ‘1’ = the pin is high @ +5v or ‘0’ the pin is LOW
@ 0v ++ We need a way to work with the
result 1 (HIGH) or 0 (LOW) - the result of the digitalRead(8) To do this we use the 'if' command. The 'if' command
checks for a condition (e.g. =1) and executes some code only if the condition is 'true'. The code below will check if
pin8 =1 and if true print text to the IDE Serial Monitor void setup() // put your setup code here, to run once: {
Serial.begin(9600); // start the serial communication pinMode(8, INPUT); // set the pin 8 as INPUT } void loop() // put
your main code here, to run repeatedly: { if (digitalRead(8)==1) // test if pin8 is HIGH (value of 1) { // if the above
condition is 'true' send the text // to the serial port which we can view in the IDE Serial Monitor Serial.println("Digital
pin 8 is HIGH"); } } A Youtube video link is attached that shows the output text in the IDE Serial monitor - it's not very
exciting! Well done if you have made it here !! we now have enough building blocks in place with some minor
additions to do some more meaningful stuff.... Regards Jonathan

model-boats.com model-boats.com

Page 6

27th Jul 2020
Arduino & Model Boats 5

After this buidling block hopefully things will start to fall into place and become more interesting - hold the faith? The
next building block we are going to cover is the IDE SERIAL MONITOR. The SERIAL MONITOR allows us to “see”
what is going “under the hood” of our program – it’s a bit like having a see-through oven door! to get used to how it
works we will send a simple message from the Arduino to the IDE Serial Monitor on our desktop computer. The
SERIAL MONITOR is mainly used during program development & debugging to help identify what is going on inside
our program LOOP as will be seen in the next tutorials.. Using the SERIAL MONITOR we can: >>> Receive data
from the Arduino serial port (serial = one character after the other) >>> Send DATA to the Arduino serial port. (which
I am not going to cover here) The SERIAL MONITOR is accessed through the IDE command ribbon by selecting
“TOOLS” and then “SERIAL MONITOR” - when selected a popup window opens on your computer which is the
SERIAL MONITOR. (see pic 2) To send serial data from the Arduino to the SERIAL MONITOR we have to: In
SETUP Start the serial connection using the command Serial.begin(speed) where speed for serial communication is
one of the following Supported baud rates are 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 31250,
38400, 57600, and 115200 In the program LOOP We need to send data to the serial port - to do this we use this
command Serial.print(); an example might be Serial.print(“hello from your Arduino”); Everything between the quote
marks will be sent to the Arduino serial port and be received by the IDE SERIAL MONITOR via the USB cable and
displayed in the desktop IDE popup window. The serial monitor popup in image 3 is highlighted in yellow The
example program is detailed in image 1 and also below void setup() // put your setup code here, to run once: {
Serial.begin(9600); // start the serial connection at speed 9600 bits per second (baud rate) } void loop() // put your
main code here, to run repeatedly: { // open bracket for the START of the main LOOP // send the characters inside
the quotes mark to the Arduino serial port Serial.print("Hello from your Arduino "); } // close bracket for the END of the
main LOOP and with all the // comments removed void setup() { Serial.begin(9600); } void loop() { Serial.print("Hello
from your Arduino "); } NOTES # We need to make sure that the baud rate speed we set in the program SETUP –
Serial.begin(9600); matches the SERIAL MONITOR baud rate – we can change the Serial Monitor baud rate by
selecting a value from a drop down list just to the right at the bottom of the monitor popup window – if they don’t
match you will either see lots of odd characters or nothing at all in your SERIAL MONITOR popup window # A good
speed to use to start with for the Serial Communication baud rate is 9600. # The Arduino Uno and Nano only have
one serial port. Other Arduino boards may have more serial ports and we would need to use a slightly different
command as we would also refer to the serial port number e.g. SETUP serial3.begin(9600); and
Serial3.print(“hello”); Regards Jonathan

Page 7

28th Jul 2020
Arduino & Model Boats 6 - Digital Multi Voice Sound

Time for some carrots!!! Putting in the time and energy to learn a new skill is hard
work, until you reach the tipping point where things begin to fall into place it can
all seem a bit confusing, boring and pointless. Often initial motivation ebbs and
the realisation of the new skill fades. So time for something inspirational
....DIGITAL MULTI VOICE SOUND DEVICE So these videos are of a guys
amazing project which might re-ignite some motivation. It's "Jedi" level so not for
the next tutorial? There are many different sounds/ engine types that are available
free and you can easily encode your own sound - yes it's in a truck but think how
this concept could be transferred to a model boat - engine sound, horn, anchor,
guns, sea gulls , general harbour noise Total cost excluding small amplifier
and speaker about £10 Oh and did I mention that this was Jedi level - it's a very
complex project as published, hundreds and hundreds of lines of code and does
some crazy amazing stuff - most not relevant to model boats - extract the good
bits and we have a simple sound project which performs as well as some
commercial boards costing 5 to 20 times the price.... However complex the code
this is the single command that makes the noise dacWrite(DAC1, Value); Enjoy
these videos - I hope you find them inspirational... Jonathan
https://youtu.be/xKvJeDONK5M?t=28 https://youtu.be/qd8sOaW5Di4?t=29
https://youtu.be/kLBms7BGrdM?t=13

Powered by TCPDF (www.tcpdf.org)

model-boats.com model-boats.com

http://www.tcpdf.org

